Class MultiSimilarity
java.lang.Object
org.apache.lucene.search.similarities.Similarity
org.apache.lucene.search.similarities.MultiSimilarity
Implements the CombSUM method for combining evidence from multiple
similarity values described in: Joseph A. Shaw, Edward A. Fox.
In Text REtrieval Conference (1993), pp. 243-252
-
Nested Class Summary
Nested classes/interfaces inherited from class org.apache.lucene.search.similarities.Similarity
Similarity.SimScorer, Similarity.SimWeight
-
Field Summary
FieldsModifier and TypeFieldDescriptionprotected final Similarity[]
the sub-similarities used to create the combined score -
Constructor Summary
ConstructorsConstructorDescriptionMultiSimilarity
(Similarity[] sims) Creates a MultiSimilarity which will sum the scores of the providedsims
. -
Method Summary
Modifier and TypeMethodDescriptionlong
computeNorm
(FieldInvertState state) Computes the normalization value for a field, given the accumulated state of term processing for this field (seeFieldInvertState
).computeWeight
(float queryBoost, CollectionStatistics collectionStats, TermStatistics... termStats) Compute any collection-level weight (e.g.simScorer
(Similarity.SimWeight stats, AtomicReaderContext context) Creates a newSimilarity.SimScorer
to score matching documents from a segment of the inverted index.Methods inherited from class org.apache.lucene.search.similarities.Similarity
coord, queryNorm
-
Field Details
-
sims
the sub-similarities used to create the combined score
-
-
Constructor Details
-
MultiSimilarity
Creates a MultiSimilarity which will sum the scores of the providedsims
.
-
-
Method Details
-
computeNorm
Description copied from class:Similarity
Computes the normalization value for a field, given the accumulated state of term processing for this field (seeFieldInvertState
).Matches in longer fields are less precise, so implementations of this method usually set smaller values when
state.getLength()
is large, and larger values whenstate.getLength()
is small.- Specified by:
computeNorm
in classSimilarity
- Parameters:
state
- current processing state for this field- Returns:
- computed norm value
-
computeWeight
public Similarity.SimWeight computeWeight(float queryBoost, CollectionStatistics collectionStats, TermStatistics... termStats) Description copied from class:Similarity
Compute any collection-level weight (e.g. IDF, average document length, etc) needed for scoring a query.- Specified by:
computeWeight
in classSimilarity
- Parameters:
queryBoost
- the query-time boost.collectionStats
- collection-level statistics, such as the number of tokens in the collection.termStats
- term-level statistics, such as the document frequency of a term across the collection.- Returns:
- SimWeight object with the information this Similarity needs to score a query.
-
simScorer
public Similarity.SimScorer simScorer(Similarity.SimWeight stats, AtomicReaderContext context) throws IOException Description copied from class:Similarity
Creates a newSimilarity.SimScorer
to score matching documents from a segment of the inverted index.- Specified by:
simScorer
in classSimilarity
- Parameters:
stats
- collection information fromSimilarity.computeWeight(float, CollectionStatistics, TermStatistics...)
context
- segment of the inverted index to be scored.- Returns:
- SloppySimScorer for scoring documents across
context
- Throws:
IOException
- if there is a low-level I/O error
-